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ABSTRACT 
 

Attitude determination algorithms for a small rotorcraft are proposed and compared. The first algorithm is 

based on the well known QUEST algorithm used for spacecraft and satellites. Due to large vibration in sensors a 

pseudo-measurement is developed from gyroscope measurements and rotational kinematics. The pseudo-

measurement is used within QUEST to smooth attitude estimations. A second simple gyro-compensated tilt sensor 

and compass is proposed and compared to the optimal QUEST solution. Both algorithms are shown to have similar 

performance. The simple gyro-compensated tilt sensor and compass is demonstrated on a small autonomous 

hovering rotorcraft. 
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SYMBOLS 

Dist  = magnitude of flight vector 
dlon, dlat = flight distance in the lateral and longitudinal direction 

lond& ,  = flight position derivatives in the lateral and longitudinal direction 
latd&

FF  = forgetting factor 
g   = Magnitude of earth’s gravity 

Bgv ,  = gravity vector expressed in the body and inertial frames Igv

intlon, intlat = lateral and longitudinal integral error 
interr, intAlt = position and altitude integral error 
intx, inty = integral error of position vector in the body frame 
KP, KI , KD = proportion-integral-derivative gains 
Klon, Klat = longitudinal and lateral cyclic control to flap gains 
Kβ  = main rotor hub torsional stiffness 
Kλ  = rotor wake intensity factor 
lonpoint  = longitudinal point of helicopter from GPS data 
latpoint  = lateral point of helicopter from GPS data 

Bmv , Mmv ,  = earth’s magnetic vector in the body, M, and inertial reference frames Imv
OptTail  = optimum tail control 
OptTail_MAX = maximum limit for optimum tail saturation 
Position1 = desired longitudinal GPS position 
Position2 = desired lateral GPS position 
p, q, r  = vehicle angular (roll, pitch, and yaw) rates expressed in the rotorcraft body reference frame 
rx, ry  = position vector in the body frame 

xr& ,  yr&  = velocity vector in the body frame 
TIB       = Transformation matrix from the inertial reference frame to the rotorcraft body reference frame 
TIM       = Transformation matrix from the inertial reference frame to the intermediate M reference frame 
TMB       = Transformation matrix from the intermediate M reference frame to the body reference frame 
TailSwitch = bandwidth of tail control 
ulon, ulat = longitudinal and lateral cyclic control inputs 
ucol  = main rotor collective pitch control input 
x, y, z  = position vector components of the center of mass expressed in the inertial reference frame 
zerror  = altitude error in the body frame 
zMAX  = maximum limit for altitude saturation 
zTR  = vertical tail offset from the center of gravity along z axis 

/B Iωv   = Angular velocity of the rotorcraft with respect to the inertial frame.  
φ, θ, ψ  = Euler roll, pitch, and yaw angles 
φTrue  = roll angle from desired position vector 
φerror  = roll error in the body frame 
θTrue  = pitch angle from desired position vector 
θerror  = pitch error in the body frame 
ψDES  = desired yaw orientation 
 

I. INTRODUCTION 

 Autonomous rotorcraft are providing improved capability in performing a diverse set of military missions 

such as reconnaissance, targeting, border patrol and environmental sensing.  The range of applications envisioned 
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for future micro rotorcraft in both the civilian and military sectors is truly staggering: reconnaissance, automated 

targeting, sensor emplacement, monitoring, surveying, weapons compliance, hostage release, urban maneuvering, 

battle damage assessment, etc. A common difficulty in applying miniature rotorcraft to these areas is the complexity 

and specialization of the control. Inexpensive commercial autopilots for unmanned vehicles are often designed for 

fixed wing aircraft having different sensor requirements than small rotorcraft. In general, rotorcraft have extreme 

vibration that make miniature inertial measurement difficult. Larger systems can filter fast dynamics to minimize the 

impact of high frequency vibrations and noise; however miniature rotorcraft require sensors with higher frequency 

content in order to respond to their fast dynamics. Typical sensors include MEMS accelerometers which are 

sensitive to vibration. Inclusion of alternative and or redundant sensors may be used to reduce vibration sensitivity 

and add useful additional feedback.   

 The estimation of orientation using multiple vector measurements is a standard attitude determination 

problem used by spacecraft and satellites. This problem can be separated into two types of solutions; deterministic 

and optimal algorithms. Deterministic algorithms use two measurement vectors (four pieces of information) and 

discard part of the measurements so that the orientation parameters can be found. A common deterministic algorithm 

is the TRIAD algorithm (TRI-axial Attitude Determination system). The algorithm was originally developed by 

Black [2] with no name given. The method was later published by Lerner [3] under the name “algebraic method.” 

The algorithm then appears as the TRIAD algorithm in [4]. The TRIAD algorithm uses two measurements, the first 

assumed to be more reliable than the second. Two right-handed orthornomal triads are formed and used to find the 

desired transformation matrix. Drawbacks of the TRIAD algorithm are that it accommodates only two observations, 

and some accuracy is lost because part of the second measurement is discarded. 

 Optimal attitude determination algorithms differ from deterministic algorithms by computing a best 

estimate which minimizes a loss function J. A general statement of the optimal attitude determination problem was 

first posed by Wahba [5]. A solution was later posed by Wahba et al [6]. However, it was Davenport and Keat  (see 

ref [4] and [7]) who used a quaternion representation that leads to an eigenvalue equation solution called the q-

method. Shuster later developed an efficient approximate method to the q-method called QUEST [4] that allows the 

approximation of the optimal quaternion without solving the eigenvalue problem. 

  The work reported here evaluates the well know attitude determination algorithms for use on small rotorcraft. In 

order to reduce noise from vibration two alternative methods are proposed and evaluated. The first alternative 

 3



algorithm adds into QUEST a pseudo-measurement vector derived from rotational kinematics. As a comparison, a 

simple gyro-compensated tilt sensor and compass is also developed.  Finally, the orientation algorithms are tested on 

a small autonomous hovering rotorcraft.    

 

II. ROTORCRAFT ORIENTATION 

The orientation of a rotorcraft can be defined by the standard aerospace sequence of body fixed rotations using 

Euler angles. The inertial axis has the II-axis horizontal to ground directed north, the JI-axis also horizontal and 

pointing east and KI directly down. The first rotation is by the angle ψ about the KI axis resulting in a M frame, 

followed by a second rotation θ about the JM axis resulting in a N frame. Finally, a rotation φ about the IN axis 

results in the body frame B. The individual transformations for each rotation are provided in Eqs. (1) to (3) where 

the common shorthand notation for trigonometric functions is employed where ( ) αα s≡sin , ( ) αα s≡cos  and 

( ) αα t≡tan . 
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The complete transformation from the inertial frame I to the body frame B is given as  where, IBT
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Using the transformation  in Eq. (6) the components of a vector in I and B can be related. Consider specifically 

the gravity vector  

IBT
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If earth’s gravity is measured in B it is straight forward to solve for φ and θ using Eq. (8). 

 

1sin XBg
g

θ − ⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
 (9) 

 

( )atan2 ,YB ZBg gφ =  (10) 

From Eqs. (5), (9), and (10) MBT can also be calculated. Two of the three Euler angles have been found from one 

measurement vector. Since  is independent of ψ it is clear we have no information about the third Euler angle. In 

general, each vector measurement provides only two pieces of information and the third is constrained by the 

magnitude since an orthonormal transformation preserves magnitude. To find the final Euler angle a second 

Bgv
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measurement vector is required. Consider a magnetometer measuring earth’s magnetic vector where it is 

assumed the inertial frame’s I-axis is aligned north and horizontal to the earth’s surface. 

mv
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Since, MBT is known from Eqs. (5), (9), and (10) the magnetic vector in the M frame can be found. 
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Comparing Eq. (13) to results in three equations. Imv
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Using only the second equation the final Euler angle ψ is found as 

 

( )atan2 ,YM XMm mψ = −  (15) 

Using two vector measurements ( and ) the three Euler angles can be found. More specifically, two pieces of 

information were used to find φ and θ and one piece was used to find ψ. In general, at least two measurement 

vectors are needed, we can discard one piece of information and use three to solve for the three unknowns or use all 

four. If all four pieces of information are used, the problem of orientation is over-determined and a least squares 

solution may be employed.  

Bgv Bmv
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 The orientation solution presented in Eqs. (9,10) and (15) is specific to the Euler angle representation. It is 

possible to describe the orientation using alternative formulations. In general, we can relate a vector in two frames 

(In our case I and B) using Eq. (16) 

 

[ ]kb ab kav T v=v v
 (16) 

where,  is an arbitrary k vector expressed in frame “b”,kbvv kavv  is an arbitrary k vector expressed in frame “a”, and 

 is the 3 x 3 orthonormal transformation matrix from “a” to “b”. The orthornomal transformation matrix can be 

defined using any valid set of orientation map. Note, in Eq. (6) Euler angles were used to describe . A common 

alternative to Euler angles is a quaternion representation. Consider a quaternion q where, 

abT
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It is well known that the transformation using a quaternion q can be expressed using the four quaternion 

components [1]. 
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Since Eq. (19) uses four quaternion components to express  which is determined by only three parameters the 

quaternion is constrained to have unity magnitude, thus having only three unique parameters. 

IBT

 

1T =q q  (20) 
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A third representation is to use the nine direction cosines in Eq. (21). As always is defined by only three 

parameters.  Therefore, in the case of direction cosines six unique constraint equations exist [1].  

IBT

 
11 12 13

21 22 23

31 32 33

IB

l l l
T l l l

l l l

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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 (21) 

Any of the three representations can be used to define orientation ( 3 Euler angles, Quaternions, or Direction 

Cosines). However, as shown in the previous example, at least two vector measurements are required to solve the 

problem.  

III. ATTITUDE DETERMINATION 

Using Eq.  (16) the attitude determination problem can be generalized in the following statement. 

 

Using at least two measurement vectors find the Euler angles, Quaternion, or Direction Cosines 

that define the orientation matrix. 

  

This problem can be separated into two types of solutions; deterministic and optimal algorithms. 

Deterministic algorithms use two measurement vectors (four pieces of information), discards part of the 

measurements so that the orientation parameters can be found, similar to the Euler angle example. The TRIAD 

algorithm uses two measurements as in Eqs. (22) and (23), the first assumed to be more reliable than the second.  . 

 
[ ]
[ ]

1 1

2 2

B IB

B IB

v T v

v T v

=

=
I

I

v v

v v  
(22) 

(23) 

Two right-handed orthornomal triads of vectors { }1 2 3, ,B B Bt t t
v v v
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Using the two triads, the solution to  is shown in Eq. (25). IBT
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T
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v v v v v v

 (25) 

The solution to   satisfies Eq. 22 exactly and in the absence of noise Eq. (25) also satisfies (23) exactly. In the 

presence of noise (23) will not be satisfied. The TRIAD algorithm is limited to using only two observations, and 

some accuracy is lost because part of the second measurement is discarded. 

IBT

 Optimal attitude determination algorithms differ from deterministic algorithms by computing a best 

estimate minimizing a loss function J. A general statement of the optimal attitude determination problem was first 

posed by Wahba [5]  in Eq. (26) where, the task is to find a  that minimizes J using the N measurements.  

 ( ) 2

1

1
2

N

IB k kB IB kI
k

J T w v T v
=

= −∑ v v
 (26) 

Davenport and Keat [4,7] developed the optimal q-method using a quaternion representation leading to an 

eigenvalue equation solution. The q-method [7] rewrites (26) using quaternions leading to an alternative gain 

function.  

 ( ) ( )1 T
IBg J T= − =q q Kq  (27) 

Where, K is a 4 x 4 matrix defined in Eq. (28). 
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TS B B= +  (28c) 

 [ ]23 32 31 13 12 21
TZ B B B B B B= − − −  (28d) 

 [ ]tr Bσ =  (28e) 

In order to minimize J, Eq. (27) must be maximized taking into the unit quaternion constraint in Eq. (20). The 

constraint in (20) can be accounted for by appending a Lagrange multiplier to (27) resulting in a new gain function. 
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 ( ) T Tg K λ′ = −q q q q q  (29) 

Differentiating Eq. (29) leads to a stationary point when Eq. (30) is satisfied. 

 
K λ=q q  

(30) 

Equation 30 is recognized as an eigenvalue problem, thus the optimal quaternion is an eigenvector of K. Substitution 

of (30) into (27) yields 

 ( ) T Tg λ λ λ= = =q q q q q  (31) 

  Or    is maximized for the largest eigenvalue of K and is the corresponding eigenvector. The QUEST 

algorithm developed by Shuster [4] approximates the optimal q-method solution without solving the eigenvalue 

problem. QUEST uses the approximation in Eq. (32) to quickly solve for . 

( )g q optq

optq

 max
1

N

k
k

wλ
=

≈∑  (32) 

 Both the TRIAD and QUEST algorithms are well known and have been used extensively for attitude 

determination of spacecraft and satellites. These systems can use multiple vector measurements from 

magnetometers, sun sensors, star sensors, and directional antennas. Theoretically, both methods can be used on 

small unmanned rotorcraft and fixed wing systems. In both cases, earth’s gravity and magnetic field can be used as 

the two measurement vectors. Practically, accelerometers on unmanned systems measure not only earth’s gravity but 

also the systems acceleration and noise. Often significant filtering is used to reduce noise and transient acceleration 

at the cost of sensor delay. In moderate dynamic systems this approach is often adequate and reasonable estimates 

can be achieved. 

 To demonstrate the performance of both the TRIAD algorithm and QUEST on an example small rotorcraft 

a set of data was generated as shown in Fig. 1. Using the known Euler angles, Igv , and measurement data was 

generated by adding Gaussian noise with a standard deviation of 0.30 G’s onto 

Imv

Bgv  and a standard deviation of 2% 

the earth’s magnetic field onto as shown in Fig. 2. Bmv
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Figure 1. True Orientation and Angular Velocities 

 

Figure 2. Measurements including noise 

  

 Results from the TRIAD and QUEST algorithms are shown in Figs. 3 and 4 with errors in Figs. 5 and 6.  

Both the acceleration and magnetometer measurements have been pre-filtered with a first-order filter having a time 
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constant of 0.125 seconds. As expected, the large high frequency errors from the poor sensors results in large error 

of near 10 deg for both φ and θ and 20 deg for ψ. Also as expected, QUEST performs slightly better than the TRIAD 

algorithm because of the optimal use of measurement information. However, in both cases the estimates are poor. 

Improvements could be made by filtering the data more; however, the increased delay in estimation becomes 

problematic. 

 

 

Figure 3. TRIAD Euler angle estimates 
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Figure 4. QUEST Euler angle estimates 

 

 

Figure 5. TRIAD Euler angle errors 
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Figure 6. QUEST Euler angle errors 

  

IV. IMPROVED ATTITUDE ALGORITHMS 

 Small unmanned rotorcraft provide a severe dynamic environment for attitude estimation due to their fast 

dynamic response and extreme vibration. Sources of vibration include the main rotor, tail rotor, and blade flapping 

dynamics. In addition, their small size requires light and small sensors, both resulting in low quality measurements. 

The additional filtering needed to eliminate vibration results in additional delay in orientation estimation. However, 

due to the fast dynamics, this additional delay leads to possible control instability. An alternative to passive filtering 

is required to improve orientation estimation. 

 Consider two sequential orientation estimates using gravity vector measurements corrupted by vibration. 

From one estimate to the next the estimated orientation may change significantly over a short period of time as seen 

in both Figs. 5 and 6. If the orientation did indeed change significantly it would require a large angular velocity. In 

the absence of any other information it is not possible to determine if the change in gravity measurement is from a 

true rotation, acceleration or noise.  The incorporation of a three-axis MEMs gyro can be used to measure /B Iωv  the 

angular velocity of the rotorcraft with respect to an inertial reference frame. 
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 /B I B B BpI qJ rKω = + +
v v vv

 (33) 

The kinematic differential equations relating the change in orientation with /B Iωv  for Euler angles, Quaternions, and 

Direction Cosines are shown in Eqs. (34-36) and can be used to quantify expected changes in orientation over 

measurements  [1].   
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A. Psuedo-Measurement Vector 

 QUEST has the ability to easily incorporate additional vector measurements. However, by inspection of 

Eqs. (22) and (23) the angular velocity /B Iωv  cannot be directly added as a third vector measurement into the q-

method or QUEST because /B Iωv  in the I frame is unknown. The proposed solution is to create a third pseudo- 

measurement vector from directly from /B Iωv  by using the rotational kinematic differential equations. 

 The first step is to select a pseudo-vector pIvv in the inertial frame I with the only restriction being it cannot 

be collinear with either the gravity or magnetic vector. Using the previous estimate of q along with (19) the 

previous pseudo-vector in B is, 

 [ ]pB IB pIv T v=v v
 (37) 
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At the next measurement Eq. (35) is used to predict by propagation of the quaternion kinematics according to Eqs. 

(38, 39) 

q%

 
t= + ∆q q q% &  

(38) 

 

1 1

2 2

3 3

4 4

0
0

02
0

q qr q p
q qr p qtI
q qq p r
q qp q r

⎛ ⎞−⎧ ⎫ ⎧ ⎫⎡ ⎤
⎜ ⎟⎪ ⎪ ⎪ ⎪⎢ ⎥−∆⎪ ⎪ ⎪ ⎪⎜ ⎟⎢ ⎥= +⎨ ⎬ ⎨ ⎬⎜ ⎟⎢ ⎥−⎪ ⎪ ⎪ ⎪⎜ ⎟⎢ ⎥⎜ ⎟⎪ ⎪ ⎪ ⎪− − −⎣ ⎦⎩ ⎭ ⎩ ⎭⎝ ⎠

%

%

%

%

 (39) 

Equation 39 is the new pseudo-measurement vector pBvv . The weights (28b) are selected to adjust the amount of 

smoothing from the pseudo-vector. If the weight on pBvv  is zero the solution reduces to the original estimator. As the 

weights on the true measurements approach zero the estimator reduces to numerical integration of the angular 

velocities, which would quickly diverge due to biases in the gyros. The pseudo-measurement vector and true 

measurements form complimentary filters. Integration of the angular velocity smoothes the measurements without 

adding delay, the other measurements eliminate divergence from integration of the gyros. 

 

B. Gyro-Compensated Tilt Sensor and Compass 

 A drawback of the previous methods is Imv  the magnetic vector in the inertial frame I is required. Due to 

magnetic variation and declination the magnetic vector varies as a function of latitude, longitude, altitude, and time. 

This requires an initial estimation unlike the gravity vector. Unlike the TRIAD and QUEST algorithms, the 

deterministic method presented in Eqs. (9, 10) and (15) does not require Imv  but only uses the measurement as a 

compass. As with the previous proposed algorithm the angular velocity /B Iωv  can be used to form complimentary 

filtering. Notice by inspection of (6), (8), and (21) that Bgv  is a direct measurement of the direction 

cosines. Instead of estimating φ and θ from (8) and (9) the gyro-compensated tilt sensor will estimate . 

Using the properties of direction cosines that the dot product of any row or column with itself is 1 the raw gravity 

measurements can be normalized. 

13 23 33, ,l l l

13 23 33, ,l l l
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The estimated direction cosines at the next measurement are found by propagating the direction cosine kinematics in 

Eq. (36).  
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 (41) 

Finally, the updated direction cosines are calculated by taking a combination of propagated and measured values and 

the updated Euler angles φ and θ can be found. 
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 [ ] [ ]( )1
131 sin 1k lφ − k+ = − +  (43) 

 [ ] [ ] [ ]( )23 331 atan2 1 , 1k l k l kθ + = + +  (44) 

Similarly, for ψ Eqs. (13), (43), and (44) can be used to calculate a measured ψ%  in while an estimated ψ̂  is found 

by propagating the kinematics in (34). 

 ( )atan2 ,YM XMm mψ = −%  (45) 

 [ ]ˆ + t k k

k k

s c
k q

c c
θ θ

θ θ

rψ ψ
⎛ ⎞

= ∆ +⎜ ⎟⎜ ⎟
⎝ ⎠

 (46) 

Finally, an updated ψ is found by taking a combination of propagated and measured values. 

 [ ] ˆ1 (1k )ψ αψ α ψ+ = + −%  (47) 

C. Comparison of Improved Algorithms  
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 To demonstrate the performance of both the improved algorithms, measurement data was generated by 

adding Gaussian noise with a standard deviation of 0.25 deg/s and a bias of 0.25 deg/s to the angular velocity data 

shown in Fig. 1. Results from improved algorithms are shown in Figs. 7 and 8 with errors in Figs. 9 and 10.  In both 

cases, the angular velocity measurements have been pre-filtered with a first-order filter having a time constant of 

0.075 seconds. For Quest, the weights appearing in Eq. (28b) were selected as 0.01, 0.07, and 1.97 for gravity, 

magnetic vector, and the pseudo-vector, respectively. For the gyro-compensated algorithm, α was selected as 0.02. It 

is clear from both Figs. 7 and 8 that the additional information from the gyros has reduced the errors from 10 deg to 

only a few degrees. Both improved algorithms have similar error bounds.  However, QUEST with a pseudo-vector 

has higher frequency content. Either algorithm could be used, however, the gyro-compensated algorithm is quicker 

to implement and is the algorithm implement in flight tests discussed later. 

 

 

Figure 7. QUEST with Pseudo-Vector Estimates 
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Figure 8. Gyro Compensated Euler angles 

 

 

Figure 9. QUEST with Pseudo-Vector Errors 
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Figure 10. Gyro-Compensated Euler Angles Errors 

 

 

V. TEST PLATFORM 

The T-Rex 600 CF helicopter was chosen as the helicopter platform.  This platform is popular among 

competition remote control pilots for its acrobatic capability. The T-Rex 600 CF is a full size radio controlled 

helicopter consisting of Carbon Fiber (CF) and CNC aluminum parts.  The helicopter measure almost 4 feet in 

length  The T-Rex 600 uses full size 600mm rotor blades and is powered by a ballistic combination of both a large 

brushless motor and lithium packs(in series).  The T-Rex 600 allows for the ability to perform 3D maneuvers.  The 

following sections are a few design features of the T-Rex 600.     
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Figure 1: T-Rex 600 Test Helicopter 

 

The T-Rex rotor head is made from a combination of plastic moldings and machined aluminum parts.  The head 

uses mixing in the transmitter to drive three servos linked to the three stationary swash plate balls at 120 degrees 

intervals.  This moves the swash plate up and down for collective pitch and tilts it for cyclic control by moving the 

servos in combination.  Because these rotors produce small damping moments in comparison to larger helicopters, 

the design features stabilizer bars for ease of handling.   

The T-Rex 600 is equipped with a mechanical Bell-Hiller stabilizer bar that affectively applies lagged rate 

feedback to the two cyclic control channels.  This system may be regarded as a secondary rotor attached to the shaft 

below the main rotor by an unrestrained teetering hinge. Aerodynamic paddles are attached to the ends of a rod.  

Cyclic pitch and roll are inputs transmitted to the stabilizer bar.  But unlike the main rotor, the stabilizer bar has no 

collective.   

VI. CONTROL ALGORITHMS 

 The small rotorcraft control law transforms the task of controlling the rotorcraft over the flight into one of 

controlling the servo applications for roll, pitch, yaw, and altitude.  Information about the desired hover point is used 

to determine when to correctly adjust the swash plate and the heading.  In hover, the desired altitude simply becomes 

the desired height above the ground.  Desired roll and pitch are related to the position of the helicopter.  Figure 12 

shows a top view of a helicopter with a desired hover location.  A vector rv describing the position error in the 

helicopter frame is defined in Eq. (48).  Equations (49) and (50) relate the desired roll and pitch to the desired 

location through terms proportional to the position and velocity errors.  
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Figure 12: Desired Roll and Pitch Geometry 
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The small rotorcraft control algorithm includes three components: Position/Velocity Filter, Swash Plate Control, 

and Heading Lock.  Figure 13 illustrates the combined flight system with descriptions and block diagrams of the 

individual modules provided below.  Figure 14 demonstrates the T-Rex 600 helicopter’s servo location with respect 

to the swash plate and tail rotor.  This representation clarifies the output channels with their appropriate servo.      
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Figure 13. Autonomous Small Rotorcraft Flight Strategy 

 
Figure 14. Servo Representation and Location on Swash Plate and Tail Rotor 

 

A. Position/Velocity Filter 

The position/velocity control filter illustrated in Figure 15 transforms the current GPS latitude (latpoint) and 

longitude (lonpoint) points of the rotorcraft into feet and subtracts these points from the desired hover position to 

calculate the current lateral and longitudinal position error vectors.  During the saturation process, a scale factor is 

used with the distance vectors to preserve the magnitude in the occurrence of large position errors. The derivatives 

of the distance vectors are used to calculate the vehicle’s current velocity.  The velocity vector is saturated with 

respect to VMAX.  Finally, the error vectors are integrated with respect to the previous integral error and featured with 

a forgetting factor.  The magnitude of this integration is determined to provide the current position integral error.  

The outputs of the position/velocity filter are the current distance vector, the current vehicle velocity, and the current 

 23



integral error.  The control system is updated four times a second.  (See Appendix for description of 

position/velocity filter block elements.) 

 

Figure 15.  Position/Velocity Control Filter Block Diagram 

 

B. Swash Plate Control 

The output of position/velocity filter is transferred to the swash plate control system along with the current 

vehicle heading and the desired altitude.  The distance, velocity, and integral errors from the position/velocity filter 

are transformed into the vehicle’s body frame by the heading angle, yaw.  The desired roll and pitch for the flight 

path has been previously described in Figure 12.  The transformed vectors are factored with their appropriate gain: 

proportional, integral, or derivative value.  The values in the x direction are combined together to provide the true 

roll value, φTrue.  This is combined with the sensor roll and roll rate of the helicopter plus a bias and their appropriate 

gains.   The values in the y direction are combined together to provide the true roll value, θTrue.  This is combined 

with the sensor pitch and pitch rate of the helicopter plus a bias and their appropriate gains.  The outputs then 

become the current roll and pitch control of the helicopter which is converted to servo controls: Channels 1 and 2.   

For the altitude control, the current altitude is inputted using a barometric altimeter and subtracted with the 

desired altitude for the flight.  The current altitude error is saturated with respect to AltMAX.  The current altitude 

error is combined with current velocity and current altitude integral error in a simple proportion-integral-derivative 
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control fashion to calculate the current collective pitch of the vehicle in flight.  The collective output is then 

converted to servo control: Channel 6.  The combined roll, pitch, and altitude control systems seen in Figure 16 

move the swash plate of the vehicle to reach the desired hover height and location.  The control system is updated 

twelve times per second.  See Appendix for block element descriptions.     

 
Figure 16: Swash Plate Control Block Diagram 

 

C. Heading Lock Control 

For the heading lock control system illustrated in Figure 17, the input is the current yaw angle which is 

subtracted from the desired heading.  First, the yaw error is saturated with pi to determine the correct direction of the 

heading angle.  Then, the yaw error is saturated with respect to Yawerror_MAX.  The current yaw error is combined 

with the current integral error and the sensor yaw rate in a proportional-integral-derivative control fashion to 

determine the optimum tail position.  The optimum tail position is saturated with respect to OptTail_MAX.  The 

optimum tail position is converted to servo control: Channel 4.  The heading lock control system is updated twelve 

times per second.  See Appendix for block element descriptions.   
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Figure 17: Heading Lock Control Block Diagram 

 

D. Autopilot 

 The flight control system hardware include: Multiple microprocessors, GPS, three axis accelerometers, 

three axis magnetometer, three axis gyroscope, electronic variometer, airspeed sensor and barometric altimeter.  The 

autopilot is illustrated in Figure 18.  Figure 19 also shows the autopilot mounted and attached to the T-Rex 600 

helicopter.  The gyro-compensated tilt sensor and compass was selected as the orientation algorithm due to its 

comparable performance with the optimal QUEST solution and its simplicity. 

 

 

Figure 18: Miniature Autonomous Rotorcraft Autopilot 
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Figure 19: Current Autopilot connected to T-Rex 600 Servos and Receiver 

 

E. Graphical User Interface 

 The ability to communicate wirelessly with the autopilot is a critical component in the autonomous flight 

development.  This achievement is made possible by the graphic user interface (GUI) seen in Figure 20.  The GUI 

allows the user to view real time sensor data, change desired wave points in current flight, store proportional-

integral-derivative gains, calibrate onboard sensors and servo parameters, and view selected variables of the control 

algorithm.   

 

Figure 20: Graphical User Interface 
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F. Flight Test Results 

For the flight test, the T-Rex 600 implemented with the autopilot was taken to a field at Dublin Park, in Madison, 

Alabama.  The helicopter was placed stationary on the field until a reasonable GPS accuracy was reached.  While 

the helicopter was stationary, all sensors were checked and calibrated appropriately.  The helicopter was then placed 

in the center of the soccer field and that specific GPS point was entered as the desired wave point into the graphical 

interface.  With the complete control algorithm programmed and all servos attached to the autopilot, the helicopter 

was taken to an altitude of 5ft manually and switched to autonomous mode.  A camera was mounted to the bottom 

of the landing gear to track the desired point in the center of the soccer field, which was marked by a 2ft x 2ft x 2ft 

black case.  Gains for desired roll and pitch KP, KD, KI were selected as 0.00017, 0.00033, and 0.0006 deg, 

respectively.  The T-Rex 600 was initialized at x = 8ft west and y = 60ft north, z = 0m, φ = 0.6 deg, θ = 2deg and ψ 

= -142 deg.  The desired position is x = y =0ft, z = 30ft and the desired orientation is θ = φ = 0 deg and ψ = -142 

deg.  Figure 21 shows the real time flight data for altitude.  Sensor noise that is amplified by the PID gains causes 

the helicopter to oscillate about the desired height of 30ft by ±10ft.    Figure 22 displays the helicopter speed which 

remains about 3ft/s for the duration of the flight.  In Fig. 23, the orientation of the rotorcraft is shown to track the 

desired angles appropriately.  Figure 24 provides the real time flight trajectory for the entire flight.  The red circle 

provided in the graph displays 20ft diameter in which the helicopter is trying to hover. Finally, Figure 25 is a real 

time shot of the helicopter in flight tracking the desired location marked by the 2ft x 2ft x 2ft black case.   
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Figure 21. Real Time Altitude Data Tracking Desired 30ft 

 

 
Figure 22.  Helicopter Velocity for Real Time Test Case 
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Figure 23. Real Time Flight Orientation 

 

 
Figure 24. Real Time Flight Trajectory within 20ft Circle 
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Figure 25. Real Time Flight Video Containing Bottom View of Tracking Desired Hover Location 
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Appendix 

Block Element Description 

 
Dist(i) = sqrt(dlon(i)*dlon(i) + dlat(i)*dlat(i)) 

 

SF = 125/Dist(i) 
dlon(i) = dlon(i) * SF     ,      if Dist(i) > 125 ft 
dlat(i) = dlat(i) * SF
Dist(i) = 125 
 
dlon(i) = 0.0     ,                  if Dist(i) < 1.0 ft                       
dlat(i) = 0.0 
 
SF = 1.0 – 1.0/Dist(i) 
dlon(i) = dlon(i) * SF     ,      if Dist(i) <125 ft 
dlat(i) = dlat(i) * SF
 
SF = 60/Dist(i),                  if Dist(i) > 60.0 ft                     

 
)(idlon

&  = 2.0*( dlon(i) -dlon(i-1) + 0.5* ; )(idlon
&

 
)(idlat

&  = 2.0*( dlat(i) -dlat(i-1) + 0.5* ; )(idlat
&

 
V(i) = sqrt( * + * ); )(idlon

& )(idlon
& )(idlat

& )(idlat
&

 

)(idlon
&  = *27.0/V(i) )(idlon

&

)(idlat
&  = *27.0/V(i) ,      if V(i)  > 27.0 ft/s )(idlat

&

 
intlon(i) = intlon(i) *FF + dt* intlon(i) *SF; 

 
intlat(i) = intlat(i) *FF + dt* intlat(i) *SF; 

 
interr(i) = sqrt(intlon(i) * intlon(i)  + intlat(i) * intlat(i)); 

 

sinyaw = sin(ψ(i)); 
cosyaw = cos(ψ (i)); 
 rx = cosyaw* dlat(i) + sinyaw* dlon(i); 
 ry = -sinyaw* dlat(i) + cosyaw* dlon(i); 

xr&  = cosyaw* + sinyaw* ; )(idlat
& )(idlon

&

 = -sinyaw* + cosyaw* ; yr& )(idlat
& )(idlon

&

 intx = cosyaw* intlat(i)  + sinyaw* intlon(i); 
 inty = -sinyaw* intlat(i)  + cosyaw* intlon(i); 
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Alterror(i) = 30.0,         if Alterror(i) > 30.0 
Alterror(i) = 30.0,         if Alterror(i) = 30.0 
Alterror(i) = -30.0,        if Alterror(i) < -30.0 

 

IntAlt(i) = 75.0,         if IntAlt(i) > 75.0 
IntAlt(i) = 75.0,         if IntAlt(i) = 75.0 
IntAlt(i) = -75.0,        if IntAlt(i) < -75.0 

 

ψerror(i) = ψerror(i) – 6.28319,       if ψerror(i) > PI 
ψerror(i) =ψerror(i) ,                         if ψerror(i) = PI 
ψerror(i) = ψerror(i) + 6.28319,       if ψerror(i) < -PI 

 

ψerror(i) = 1.57,       if ψerror(i) > 1.57 
ψerror(i) = 1.57 ,      if ψerror(i) = 1.57 
ψerror(i) = -1.57 ,     if ψerror(i) < -1.57 

 

Interr(i) = 3.0,       if Interr(i) > 3.0 
Interr(i) = 3.0,       if Interr(i) = 3.0 
Interr(i) = -3.0,     if Interr(i) < -3.0 

 

OptTail(i) = 0.125,       if Interr(i) > 0.125 
OptTail(i) = 0.125,       if Interr(i) = 0.125 
OptTail(i) = -0.125,     if Interr(i) < -0.125 OptTail_Max

SAT

-OptTail_Max

SAT AltMAX

-AltMAX

SAT IntAlt_Max

-IntAlt_Max

SAT PI

-PI

SAT 
ψerror_Max

-ψerror_Max

Intψ_Max
SAT

-Intψ_Max
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OptTail(i) = 0.125,       if Interr(i) > 0.125 
OptTail(i) = 0.125,       if Interr(i) = 0.125 
OptTail(i) = -0.125,     if Interr(i) < -0.125 

 

tailswitch = 1.75 * 0.125; 
         if(abs(OptTail(i) – OptTail(i-1)) > tailswitch)  { 
            OptTail(i) = OptTail(i-1); 
      } 

OptTail_Max
SAT

-OptTail_Max

Tail 
Switch
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